Assessment of Bioavailability of P from Animal Manures PTDC/AGR-PRO/112127/2009

Animal Manures Applied to Soil:

Phosphorus Bioavailability, Losses to Water and Erosion

Carmo Horta*, Paulo Ribeiro, Marta Batista, João Paulo Carneiro, António Duarte, Marta Roboredo José Torrent and Andrew Sharpley.

*corresponding author: carmoh@ipcb.pt

FCT Fundação para a Ciência e a Tecnologia

Objectives

Evaluate the partition of applied P between plant uptake, losses to water and by erosion when using different P sources, in Mediterranean conditions.

The experiments were carried out in Castelo Branco, Portugal, at Escola Superior Agrária.

1- Experimental erosion field

15 plots - 42 m² Slope - 9%

2- P Desorption Experiment

Simulate P losses to runoff waters 1:1000

Suspension samples were taken from 4 to 270 days

After centrifugation P_d was quantified

Tank to collect the sediments and runoff water

5 treatments X 3 repetions; completely randomized Regosol (IUSS;2006); Granitic rock

Materials and Methods

Treatments:

- C Control without P fertilization
- F Mineral fertilizer
- M -Manure (cattle)
- **D** Duck effluent (dry matter)
- P Pig slurry (dry matter)

Fertilization 50 kg P/ha

- 1-Ryegrass sown in november; N fertilization in all treatments.
- 2- Desorpion experiment:

Samples of each treatment were incubated 3 months (25°C and 70% FC) and then soil suspension 2 x $10^{-3}M$ CaCl₂ (1:1000 ~ runoff water).

Experimental data of the year 2012-13

Materials and Methods

Analysis

- (1) Yield (dry matter) and **P** uptake by ryegrass;
- (2) Soil bioavailable **P** before and after harvest (Olsen-P);
- (3) P_d desorption experiment and runoff waters P_d ø < 0.45 μm and P_d < 0.023 μm and P_t sediments of field experiment

Results

Yield and P uptake by ryegrass

- Fertilization with organic manures increases significantly yield and P uptake
- -D treatment shows the highest values ($p \le 0.05$).

Soil bioavailable P (Olsen-P)

P fertilization increases significantly soil bioavailable P irrespective of P source.

At the end of the experiment

D increases significantly bioavailable soil P

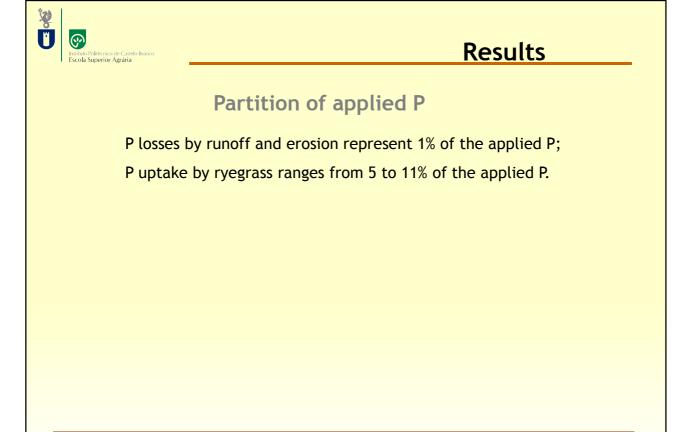
P fertilization increases significantly the most labile P fractions,

The increase in D is due to P_{CB} : P in calcium phosphates (feed origin).

Results

P_d desorption experiment (1:1000)

- 1- After 14 days P desorption exceed the P_d threshold level in runoff waters to prevent eutrophication (P > 0.05 mg/L) in all fertilized samples but in manure treatments.
- 2- Duck treatment shows very high potential to desorb P to runoff water.


P_d in runoff waters collected in the field experiment

 P_d ø< 0.023 µm; P_i > 0.05 mg/L ; $P_o \leq$ 10 %

The experiment highlights the significance of soil profile characteristics in the behavior of P losses to water.

Sediments in the field experiment

Sediments losses by erosion had mainly a very small size \emptyset < 2mm and a high P_t level.

carmoh@ipcb.pt

Questions?